LECTURE 9

In the last lecture, we ended on the classical form of the derivative, i.e.
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But the philosophy of having h — 0 is equivalent to have a point z — z. Therefore, an alternate form of the
derivative is
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(essentially with a change of variable z = x + h).
Example 1. (Using the alternate definition) Find the derivative of f (z) = /z.

Solution. Consider the alternate definition,
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which is cleaner than using conjugation in the classical form.

Graphing the derivative f’ (z) informs you about how fast the original graph of f (x) is changing. Consider
example 1 (also a brilliant example in Figure 3.6 of the book).

Definition 2. (Left and Right Derivative)
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Example 3. Find the derivative of f (z) = |z| and check if derivative exists at z = 0.

Solution. Note that separately for z < 0 and x > 0, the graph looks like two lines which are certainly
differentiable. The point of controversy is z = 0. Left-hand derivative at x =0
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Since the left-hand and the right-hand derivatives are NOT equal, the function is NOT differentiable at
2 = 0. Also, see the graph for an intuition (you can put infinitely many tangent lines at # = 0, which means
infinitely many slopes, but the derivative is unique).

Theorem 4. (Differentiability implies continuity) If f has a derivative at x = ¢, then f is continuous at
T =c.
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Proof. So, we know f’(c) exists (by the premise). We want to show lim, .. f (x) = f(c¢) which is the
definition of continuity. An equivalent statement would be limy_,o f (¢ + h) = f (¢) (you are approaching ¢
closer and closer).

Your goal is to use the information that f’(c) is something concrete while evaluating limy,_o f (¢ + h)
(and see if it is equal to f (c)). Thus, you are trying to “cook” up a situation where f’ (¢) shows up somehow
when evaluating limy,_,o f (¢ + h), by means of proper mathematical operations. We do the infamous, add
and subtract, and then multiply and divide:

lim £ (c+h) = lim  (c+h) — £ (¢) + f (c)
_p+ i LN 1@,
=0+ i FEEEE S
=f+1()-0
= f(c)

Using the alternate definition of the derivative, we can also do this (we start with lim,_,. f (x))
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Remark. If f is continuous at x = ¢, it does NOT imply that f has a derivative at x = c.

Counterexample: f (z) = |z| at = 0. Continuous but not differentiable at z = 0.

Thus, we say, it is sufficient that f is differentiable for it to be continuous. (Differentiable is a higher
order of smoothness).

Do exercise 45-50.



